Stochastic Control in Market Making

Kuan Yang
Mathematical and Computational Finance @ Oxford Quant Trader © DV Trading LLC
With Yafang Wu (WJH), Alvaro Cartea (Oxford)

Presentation @ Lanzhou University, 18 Apr 2023

Oxford
Mathematics

Stochastic Control Problem

- state process $X=\left(X_{t}\right)_{t \in T}$;
- have control α_{t} exert to the trajectory of X
- then we get the controlled diffusion process X

$$
\mathrm{d} X_{t}=b\left(X_{t}, \alpha_{t}\right) \mathrm{d} t+\sigma\left(X_{t}, \alpha_{t}\right) \mathrm{d} W_{t}, X_{0}=x \in \mathcal{R}^{n}
$$

, where W_{t} is d-dimensional BM , control process α_{t} lying on control set $A \subset \mathcal{R}^{m} . b: \mathcal{R}^{n} \times A \mapsto \mathcal{R}^{n}, \sigma: \mathcal{R}^{n} \times A \mapsto \mathcal{R}^{n \times d}$

- Finite Horizon Objective:

$$
J(x ; \alpha):=\mathbf{E}\left[\int_{0}^{T} f\left(t, X_{t}, \alpha_{t}\right) \mathrm{d} t+F\left(X_{T}\right)\right]
$$

- Value Function:

$$
u:=\sup _{\alpha \in A} J(x ; \alpha)
$$

Market Making Basics

- Definitions
- Market Orders (MO)
- Limit Orders (LO): Passive Quoting, resting on book
- Limit Order Book (LOB): Has bid and ask side, consisting of LOs
- Mid Price: Avg of Bid and Ask Price
- Spread: the difference between ask and bid
- Market Maker (MM): Market Maker quoting on both bid and ask side, providing liquidity to the market and charging the spread
- MM wants to minize risk while maximize the profit.

Into the Market I

Mathematical

Figure: Well known MMs

Into the Market II

Figure: A trading infra with Bid and Ask

Into the Market III

Figure: DV Trading

Market Making Problem I

- Mid Price Process S_{t}

$$
S_{t}=S_{0}+\sigma W_{t}
$$

- MM posting depth: $\delta^{ \pm}$, LO on bid side: $S-\delta^{-}$, on ask side: $S+\delta^{+}$
- MO Arrival Counting Process: $M^{ \pm} \sim \operatorname{Pois}\left(\lambda^{ \pm}\right)$
- LO filling Counting Process: $N^{ \pm} \sim \operatorname{Exp}\left(\kappa^{ \pm}\right)$:

$$
\mathrm{d} N^{ \pm}=\exp \left(-\kappa^{ \pm} \delta_{t}^{ \pm}\right) \mathrm{d} M^{ \pm}
$$

- MM Cash Process:

$$
\mathrm{d} X_{t}^{\delta}=\left(S_{t^{-}}+\delta_{t}^{+}\right) \mathrm{d} N_{t}^{\delta,+}-\left(S_{t^{-}}-\delta_{t}^{-}\right) \mathrm{d} N_{t}^{\delta,-}
$$

Market Making Problem II

- Inventory Process: $Q_{t}^{\delta}=N_{t}^{\delta,-}-N_{t}^{\delta,+}$
- MM's performance:

$$
H^{\delta}(t, x, S, q)=\mathbf{E}_{t, x, S, q}\left[X_{T}+Q_{T}\left(S_{T}-\alpha Q_{T}\right)-\phi \int_{t}^{T}\left(Q_{u}\right)^{2} d_{u}\right]
$$

- Objective:

$$
H(t, x, S, q)=\sup _{\delta^{ \pm}} H^{\delta}(t, x, S, q)
$$

Dynamic Programming Principle

- The MM use random control δ during $[t, t+\epsilon)$
- The MM use optimal control $\hat{\delta}$ during $[t+\epsilon, T]$

Then we obtain the following inequality

$$
\begin{equation*}
H(t, x, S, q) \geq E\left[-\int_{t}^{t+\epsilon} Q_{u}^{2} \mathrm{~d} u+H\left(t+\epsilon, x_{t+\epsilon}, S_{t+\epsilon}, q_{t+\epsilon}\right)\right] \tag{1}
\end{equation*}
$$

Hamilton-Jacobi-Bellman Equation I

$$
\begin{align*}
& H\left(t+\epsilon, x_{t+\epsilon}, S_{t+\epsilon}, q_{t+\epsilon}\right)=H(t, x, S, q) \\
& +\int_{t}^{t+\epsilon} \partial_{t} H+\frac{\sigma^{2}}{2} \partial_{S S} H \mathrm{~d} u+\int_{t}^{t+\epsilon} \sigma \partial_{S} H \mathrm{~d} W_{u} \\
& +\int_{t}^{t+\epsilon}\left(H\left(u, x+\left(S+\delta^{+}\right), S, q-1\right)-H\right) \mathrm{d} N^{\delta,+} \tag{2}\\
& +\int_{t}^{t+\epsilon}\left(H\left(u, x-\left(S-\delta^{-}\right), S, q+1\right)-H\right) \mathrm{d} N^{\delta,-}
\end{align*}
$$

Hamilton-Jacobi-Bellman Equation II

Inject back to Eqn(1), take the sup we get:

$$
\begin{align*}
0= & \partial_{t} H+\frac{1}{2} \sigma^{2} \partial_{S S} H-\phi q^{2} \\
& +\lambda^{+} \sup _{\delta^{+}}\left[e^{-\kappa^{+} \delta^{+}}\left(H\left(t, x+\left(S+\delta^{+}\right), q-1, S\right)-H\right)\right] \tag{3}\\
& +\lambda^{+} \sup _{\delta^{-}}\left[e^{-\kappa^{-} \delta^{-}}\left(H\left(t, x-\left(S-\delta^{-}\right), q+1, S\right)-H\right)\right]
\end{align*}
$$

with the terminal condition:

$$
H(T, x, S, q)=x+q(S-\alpha q)
$$

Optimal Controls

For the following ansatz for H

$$
H(t, x, q, S)=x+q S+h(t, q)
$$

We have optimal controls:

$$
\delta^{+}=\frac{1}{\kappa^{+}}-h(t, q-1)+h(t, q)
$$

and

$$
\delta^{-}=\frac{1}{\kappa^{-}}-h(t, q+1)+h(t, q)
$$

Property of the Solution, $\phi=0.01$

Figure: The optimal depths as a function of time for various inventory levels and $T=30$. The remaining model parameters are: $\lambda^{ \pm}=1, \kappa^{ \pm}=100, \bar{q}=-\underline{q}=3$, $\phi=0.001$ and $\phi=0.02, \alpha=0.0001, \sigma=0.01, S_{0}=100$.

Figure: Solution, credit to Prof. Jan Obloj

Property of the Solution, $\phi=0.02$

Figure: The optimal depths as a function of time for various inventory levels and $T=30$. The remaining model parameters are: $\lambda^{ \pm}=1, \kappa^{ \pm}=100, \bar{q}=-\underline{q}=3$, $\phi=0.001$ and $\phi=0.02, \alpha=0.0001, \sigma=0.01, S_{0}=100$.

Figure: Solution, credit to Prof. Jan Obloj

Drawbacks \& Frontiers

- Mid Price is not a good measure
- Fair Price which measures instruments correlation
- Fair Price is hard to formulate
- Incorporate Alpha signals into Price Formulation
- No Aggressive Fill possibility
- Hawkes Process instead of Poisson Process
- Poor Property leads to numerical solution, while solving high dimensional PDE is time-consuming

Jane Street sue LME

US trading firm Jane Street sues LME for nickel trade chaos
路
Lawsuit comes a day after similar action by Elliott against metals exchange over March trade halt

The London Metal Exchange's owner has said the claims are without merit' (5) Jason Alden/Bloomberg

William Langley in Hong Kong JUNE 72022

Jane Street, a top Wall Street market maker, has followed US hedge fund Elliott Management and launched a lawsuit against the London Metal Exchange over the nickel short squeeze fiasco.

Figure: Jane Street Sue London Metal Exchange

