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jan.obloj@maths.ox.ac.uk

MSc in Mathematical and Computational Finance
Mathematical Institute, University of Oxford

Hilary Term 2022
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Introduction

Market Microstructure and Algorithmic Trading
Main aim is to learn about
• Market Microstructure: How electronic markets operate, the price

formation mechanisms, choices available to market participants and their
(potential) information signals

• Algorithmic Trading (AT): The use of computer algorithms that make
trading decisions, submit orders, and manage those orders after submission.
• NYSE 2005 to 2009: consolidated av daily share vol up 181%; av speed

of exec for small (marketable) orders down 10.1 to 0.7 sec;
consolidated av daily trades up 662%; consolidated av trade size dwon
724 to 268 shares, SEC (2010).

• US/EU: 2003 AT ∼ 15 % of market volume, in 2010 about 60–70%.
FX: from 25% in 2006 to 80% in 2016.

• High Frequency (HF) Trading: refers to the subset of AT trading strategies
that are characterised by their reliance on speed differences relative to other
traders to make profits based on short-term predictions and also by the
objective to hold essentially no asset inventories for more than a very short
period of time.
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Introduction

Why AT? One example

• Institutional or large players need to trade (buy and sell) large
amounts of securities. These quantities are too large for the market
to process without prices moving in the ‘wrong direction’ (slippage).

• Thus, large orders are broken up in small ones and these are traded
over time (minutes, hours, days, weeks, or even months) and across
different venues.

• Deciding how to break up and execute a large order can mean saving
millions of pounds for large players
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Introduction

Reading

There is a wealth of ongoing research and growing body of publications.
For market impact modelling, a good start are two survey papers:

• Lehalle,“Market Microstructure Knowledge Needed for Controlling an Intra-Day Trading
Process”

• Gatheral and Schied, “Dynamical models of market impact and algorithms for order
execution”

both in 2013 Handook on Systemic Risk (ed. Fouque and Langsam) and on arXiv.

For market microstructure, I suggest two review papers and four books:

• Chakraborti et al, “Econophysics review” (parts I and II), in Quantitative Finance, 2011

• “How markets slowly digest changes in supply and demand”, Bouchaud et al (2009)

• O’Hara, Market Microstructure Theory, 1995

• Hasbrouck, Empirical Market Microstructure: The Institutions, Economics, and
Econometrics of Securities Trading, 2006

• Lehalle and Laruelle, Market Microstructure in Practice, 2014.

• Cartea, Jaimungal and Penalva, Algorithmic and High-Frequency Trading, 2015.
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Introduction

Some questions to the audience...

Market Microstructure usually refers to

A The structure of prices across different stocks

B The price formation mechanisms from trading actions

C The micro movements of the stock price within one day

D All of the above
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Modelling in Quantitative Finance Brief history of modelling in QF

Models in Quantitative Finance

• “All models are wrong but some are useful” (G. Box ’78)
• Models need to be tailored to

• the available inputs
• the intended outputs

• Models need to
• conform to stylised facts
• produce reasonably useful and robust outputs
• avoid creating arbitrage opportunities
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Modelling in Quantitative Finance Brief history of modelling in QF

Brief history of modelling in QF

• Fair price (fundamental economics)
model: fundamentals

• Option pricing & optimal investment
model: the underlying price process (exogenous)
Samuelson ’65, B&S and Merton ’73

• Further option pricing: Exotics or FI options
model: a high- or ∞- dimensional system of underlyings
e.g.: HJM ’92 and LMM ’97 in Fixed Income; Market models of
Schweizer & Wissel ’08, Carmona & Nadtochiy ’09
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Modelling in Quantitative Finance Brief history of modelling in QF

Brief history of modelling in QF – cont.

• Optimal execution of planned trades
model: impact of trades on price dynamics or
model: supply & demand dynamics
Bertsimas & Lo ’98, Almgren & Chriss ’00;
Obizhaeva & Wang ’13, Alfonsi et al. ’08

• Price formation via market microstructure
model: LOB dynamics (zero intelligence)
model: Agent trades (agent based)
Cont et al. ’10, Smith et al. ’03, Farmer et al. ’05;
Kyle ’85, O’Hara ’95

... and MANY more references...
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Modelling in Quantitative Finance Market Frictions

Frictionless modelling setting

The classical modelling framework in mathematical finance, like the one
postulated by Black and Scholes ’73, assumes infinite liquidity:

• asset traded at uniquely given and known prices

• buying and selling in arbitrary quantities possible

• trading at no cost possible

• trading has no impact on the price

This is unrealistic and unsatisfactory: in reality we have market frictions.
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Modelling in Quantitative Finance Market Frictions

Market Frictions
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Modelling in Quantitative Finance Market Frictions

Market frictions – cont.

Many frictions either part of the game (opportunity cost) or well-defined
(taxes). For many traders other frictions satisfactory summarised in

• proportional transaction costs: pay εSt for trading one unit of St .

However this is not acceptable for

• large trades (relative to volume & time horizon)

• frequent trading (relative to liquidity)

which require understanding of

• liquidity provision and

• price formation.
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Modelling in Quantitative Finance Market Frictions

Aspects of liquidity (Kyle ’85)

• Tightness (Breadth): measures how wide the bid-ask is, i.e. measures
the cost of a position reversal at a short notice for a standard amount

• Market depth: corresponds to the volume which may be
bought/sold without immediately affecting the price

• Market resilience: describes the speed at which prices revert to
previous level (equilibrium) after a random shock in the order flow

• Time delay: measures the delay between processing and executing
an order
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Modelling in Quantitative Finance Market Frictions

Aspects of liquidity (Kyle ’85)

ARTICLES
Market liquidity and its incorporation into risk management

Banque de France • Financial Stability Review • No. 8 • May 2006 65

and exit at no cost, transparent information). The 
degree of liquidity of a market is traditionally 
assessed on the basis of three essential criteria:

• the tightness of the bid-ask spread, which measures 
the cost of a reversal of position at short notice for 
a standard amount,

• market depth, which corresponds to the volume 
of transactions that may be immediately executed 
without slippage of best limit prices,

• market resilience, i.e. the speed with which prices 
revert to their equilibrium level following a random 
shock in the transaction fl ow. 

The fi rst aspect is a direct measure of transaction 
costs (excluding other operational costs such as 
brokerage commissions and clearing and settlement 
fees). The last two indicate the market’s ability to 
absorb signifi cant volumes without adverse effects 
on prices. The rest of the article will focus mainly 
on market breadth and depth insofar as it will pay 
more attention to the costs of immediacy than to 
how long it takes prices to return to equilibrium 
(see Chart 1).

The bid price is the highest price that the market 
maker is willing to pay at a given time to acquire 
a specifi c amount of assets. Symmetrically, the 
ask price is the lowest price at which the market 
maker is willing to sell a given amount of assets. 
The gap between the bid price and the ask price 
(the bid-ask spread) compensates the market maker 
for the immediacy of execution that it offers to its 
counterparties. The spread measures the cost of a 
sell/buy or buy/sell sequence over a short period 
(two-way transaction); only the half-spread should 
therefore be attributed to a single transaction (sale or 
purchase) if one considers that the mid-price is the 
one that should be paid in a perfectly liquid market. 
The tightness of the spread depends, inter alia, on the 
costs of processing orders from market makers, the 
size and volatility of accumulated order fl ows as well 
as the degree of information asymmetry between 
market makers and initiators of transactions (the 
market maker is exposed to the risk of dealing with 

investors that have private information regarding 
the real value of the asset). In a quote-driven market, 
the quoted spread2 corresponds to the difference 
between the best bid price and the best ask price 
offered by market makers, whilst in an order-
driven market, what is important is the difference 
between the best limit order book prices.3 However, 
the spread quoted in the markets is not generally 
an exact refl ection of transaction costs (for a
buy/sell sequence) because certain transactions 
may be traded not at the bid or the ask price but at 
prices located within this spread, or even outside 
this spread, even for standard amounts.4 In addition, 
the spread is a measure of the liquidity available 
at a given time. With a view to risk measurement 
and management, it is therefore important to take 
account of its variability over time.

In particular, the spread is quoted for limited 
amounts and it normally tends to widen in the 
presence of massive order fl ows, which is what the 
concept of depth refers to. In the case of a sale, 

Chart 1
Aspects of market liquidity
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Note : The bid price Bp and the ask price Ap are defi ned for the 
standard amounts OA and OA’. The Bp-Ap spread represents the 
“breadth” of the market. The amounts OA and OA’ are those that 
may be traded without price slippage: they refl ect market “depth”. 
Beyond points A and A’, one sees the negative impact of large-value 
transactions on the execution price. Resilience refers to the time aspect 
of liquidity and indicates how quickly prices adjust to their equilibrium 
value following a shock in transaction fl ow.

2 In general, the quoted spread is expressed as a ratio of the mid-price. It is then called the relative (quoted) spread.
3 These two types of market organisation differ with respect to the price setting methods and the way in which liquidity is ensured. On an order-driven market, 

liquidity is created by matching orders in a central order book. On a price-driven market, liquidity is created through the actions of intermediaries (market makers) 
who guarantee investors a bid price and an ask price for a minimum amount.

4 One may therefore calculate the relative effective spread, corresponding to the absolute difference between the price at which a transaction was performed and 
the midpoint (the difference is expressed as a ratio of the midpoint).

Source: Bervas ’06
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Modelling in Quantitative Finance Market Frictions

Summary so far

• Models are build taking into account available inputs and desirable
outputs

• In QF models postulate exogenous dynamics for different underlyings
depending on what is traded and what one wants to price

• Traditional models assume a frictionless setting with ∞ liquidity

• In practice this fails. A lot can be accounted for using proportional
transactions costs.

• Large and/or frequent trading requires modelling of liquidity and/or
price impact.
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Price Impact Models and Optimal Execution
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Price Impact Models and Optimal Execution The modelling setup

Price impact modelling

We saw that large and/or frequent trades may affect the price. We may
need to split and spread large orders in practice. To answer how to do it
we need to understand:

• how to model/quantify the impact of trading on the price?

• what are the desirable/undesirable properties of such models?

• how to compute optimal execution trading strategies?

There are two natural approaches to model price impact:

I: postulate fair price dynamics and the price impact of trading

II: be serious about modelling Market Microstructure, i.e. model supply
and demand and their interaction.

We focus first on I. Then we use the LOB discussion to tackle II.
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Price Impact Models and Optimal Execution The modelling setup

Trade execution setup
Goal: buy/sell N shares by time T .

Trade execution strategy:

• Q = (Qt)t≤T , where Qt is the number of shares held at time t

• The initial position Q0 = q = N is positive for a sell strategy and
negative for a buy strategy

• The final condition QT = 0 indicates the position is liquidated at T

• The path will be monotone for a pure buy or pure sell strategy. In
general it is of finite variation.

We think of T as around 5− 10, and up to 30, minutes.
For now, we are ignoring problems from higher(+) or lower(-) levels:

+ How a large desired trade position is split into chunks allocated their
time horizons.

- What orders (market vs limit) are used and to which venues these are
routed.
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Price Impact Models and Optimal Execution The modelling setup

Price impact model

Price impact model quantifies the feedback effect of trading strategy Q on
the asset price. A typical setup is:

• Exogenously specified price process S0 = (S0
t : t ≤ T ) for fair

(unaffected) price dynamics.
S is a semimartingale (usually a martingale) on a filtered probability
space (Ω,F , (F t),P) and we assume Q is predictible

• Given Q, a model prescribes SQ the price process realised when
implementing trading strategy Q.

• Typically dQt = νtdt and we then write SQ = Sν .

• Typically, a buy strategy increases the prices and a sell strategy
decreases the prices: if νt ≥ 0 for all t ≤ T then Sνt ≥ S0

t , t ≤ T .
However this is not necessarily true for a fixed t since Sνt may be
affected by all of (Qu : u ≤ t).
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Price Impact Models and Optimal Execution The modelling setup

Revenues and costs

Suppose dQt = νtdt and Sνt depends continuously on Q. Then at time t,
the infinitesimal amount of −dνtdt shares is sold at price Sνt . Thus

revenues from strategy Q are R(Q) = −
∫ T

0
SQ
t dQt

(when Q is not absolutely continuous adjustments are necessary)

Objective: Maximise some performance functional of R(Q).
For example:

• maximise the expected value E[R(Q)]

• maximise a mean-variance criterion E[R(Q)]− λ var(R(Q))

• maximise the expected utility E[U(R(Q))]

• ...

©Jan Ob lój, University of Oxford Market Microstructure & Algo Trading Hilary Term 2022 22 / 165



Price Impact Models and Optimal Execution The modelling setup

Revenues and costs – cont.
Alternatively: Minimise functional of implementation shortfall (i.e. cost
of liquidation), which is the difference between the book value Q0S

0
0 and

the revenues (or the capture):

liquidation cost of Q is C(Q) = Q0S
0
0 −RT (Q).

If we write SQ
t = S0

t + IQt then

R(Q) = −
∫ T

0
SQ
t dQt = −

∫ T

0
S0
t dQt −

∫ T

0
IQt dQt

= S0
0Q0 +

∫ T

0
QtdS

0
t︸ ︷︷ ︸

=−Cvol (Q)

−
∫ T

0
IQt Q̇tdt︸ ︷︷ ︸

=Cexec (Q)

The total liquidation cost C(Q) has two components:
• Cvol expresses the volatility risk of trading over time instead of

instantly
• Cexec expresses the effect of price impact
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Price Impact Models and Optimal Execution Almgren–Chriss models

Almgren–Chriss type price impact
The unaffected price follows a Brownian motion:

S0
t = S0

0 + σWt .

Then, the price impact has two components:

• permanent impact:
∫ t

0 g(νs)ds

• temporary impact: h(νt)

for nondecreasing functions g , h : R→ R and Q̇t = dQt
dt = νt the trading

speed. The affected price is given by

SQ
t = S0

t +

∫ t

0
g(νs)ds + h(νt).

In the special case of linear impacts: g(x) = γx and h(x) = ηx

SQ
t = S0

t + γ

∫ t

0
dQs + ηνt = S0

t + γ(Qt − Q0) + ηνt .
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with linear price impact

In the special case of linear impacts: g(x) = γx and h(x) = ηx

SQ
t = S0

t + γ

∫ t

0
dQs + ηνt = S0

t + γ(Qt − Q0) + ηνt︸ ︷︷ ︸
=IQt

.

The revenues are then given by

R(Q) = −
∫ T

0
SQ
t dQt = S0

0Q0 +

∫ T

0
QtdS

0
t −

∫ T

0
IQt νtdt

= S0
0N + σ

∫ T

0
QtdWt −

γ

2
N2 − η

∫ T

0
ν2
t dt,

since QT = 0.
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with linear price impact (cont.)
Assuming Q is bounded, the expected revenues are

E[R(Q)] = S0
0N−

γ

2
N2 − η E

[∫ T

0
ν2
t dt

]
.

The last term is an integral w.r.t. P(dω)⊗ dt of the square of νt(ω). It
follows that it is minimised, and hence E[R(Q)] is maximised, by the
strategy

ν∗t = −N

T

which sells (or buys) the shares at constant speed (to see this simply apply
Jensen’s inequality). In particular the solution is independent of the
volatility! (Bertsimas & Lo ’98)

The resulting expected liquidation cost of N shares is

E[C(Q)] =
(γ

2
+
η

T

)
N2

quadratic in number of shares and independent of volatility σ.
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model so far – summary

Proposition

In the Almgren–Chriss price impact model with linear permanent impact,
g(x) = γx , and xh(x) convex, for any given N ∈ R the strategy

Q∗t =
N(T − t)

T
, t ≤ T ,

maximises the expected revenues E[R(Q)] in the class of all adapted and
bounded trade execution strategies Q.

The strategy Q∗ spreads the execution evenly over the time horizon
t ∈ [0,T ]. It is often referred to as the time-weighted average price
strategy or TWAP. When the time is relative and t corresponds to traded
volume the Q∗ is called volume-weighted average price strategy or VWAP.
Both are used as industry benchmarks.
Almgren et al. ’05 argued these assumptions are consistent with empirical
observations and suggested xh(x) ≈ |x |1.6.
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with mean-variance criterion

So far we only looked at expected revenues. Almgren and Chriss ’00
propose to consider

max
Q

E[R(Q)] subject to var(R(Q)) ≤ v∗

which, introducing a Langrange multiplier, turns into an unconstrained
problem

max
Q

(E[R(Q)]− λ var(R(Q))) .

This is a hard problem. However assuming Q is deterministic it turns into

max
Q

(
NS0

0 −
γ

2
N2 − η

∫ T

0
Q̇2

t dt − λσ2

∫ T

0
Q2

t dt

)
which can be solved explicitly as a standard variational calculus problem.
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with mean-variance criterion
Indeed, the problem is equivalent to

min
Q

∫ T

0

(
λσ2

2
Q(t)2 + ηQ ′(t)2

)
dt

Setting the first variation to zero:

0 =

∫ T

0

(
g(t)λσ2Q(t) + 2g ′(t)ηQ ′(t)

)
dt, ∀g ∈ C 1 : g(0) = g(T ) = 0.

Integrating by parts:

0 =

∫ T

0
g(t)

(
λσ2Q(t)− 2ηQ ′′(t)

)
dt, ∀g ∈ C 1 : g(0) = g(T ) = 0

which gives the Euler-Lagrange equation

Q ′′(t) =
λσ2

2η
Q(t), s.t. Q(0) = N,Q(T ) = 0.

Solving the ODE we obtain
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with mean-variance criterion
The solution is given by

Q∗t = N
sinh(κ(T − t))

sinhκT
for κ =

√
λσ2

2η
.

1 2 3 4 5

200000

400000

600000

800000

1×106

Optimal liquidation strategy of 106 shares over 5 days under 30% annual vol and

impact 1% of daily volume = bid-ask. Moderate λ.
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with mean-variance criterion
The solution is given by

Q∗t = N
sinh(κ(T − t))

sinhκT
for κ =

√
λσ2

2η
.

1 2 3 4 5

200000

400000

600000

800000

1×106

Optimal liquidation strategy of 106 shares over 5 days under 30% annual vol and

impact 1% of daily volume = bid-ask. High λ.
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with other criteria

Mean-variance is not amenable to dynamic programming and leads to
time-inconsistent strategies. In analogy to optimal investment, other
criteria are natural:

• Maximise expected utility: maxQ E[U(R(Q))]
The problem can be reformulated as a stochastic control problem with
non-standard (finite fuel) constraint: Q0 = N and QT = 0. Leads to
an HJB equation. Solution known for U(x) = − exp(−λx) ... the
same as for mean-variance! (Schied, Schöneborn & Tehranchi ’10).

• Maximise

E
[
R(Q)− λ

∫ T

0
QtS

Q
t dt

]
Gatheral & Schied ’11

• And more... see the next section, where we look at these using
stochastic control methods!
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Price Impact Models and Optimal Execution Almgren–Chriss models

Criticism of A–C setting

• Price process can go negative; impact additive & in absolute terms.
Bertsimas & Lo ’98 suggest

SQ
t = S0

t exp

(∫ t

0
g(νs)ds + h(νt)

)
, S0

t = S0
0 exp

(
σWt −

σ2

2
t

)
but computing optimal strategies more involved.

• Price impact simplistic, in reality transient effect, see Moro et al. ’09
(cf. resilience)

• Computed optimal strategies are deterministic and do not react to
price changes

• No modelling of feedback effects between the seller and the market
(e.g. Flash Crash 06/05/10)

=⇒ Need to understand price formation better!
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Price Impact Models and Optimal Execution Almgren–Chriss models

Summary of A–Ch-type market impact modelling

• Revenues from a large sell/buy order may depend crucially on its
execution

• The optimal execution strategy in turn may depend crucially on the
criterion

• Almgren–Chriss models involve permament and temporary impact of
trades on prices

• Under linear impacts and maximising revenues, it is optimal to sell at
a constant speed

• Under linear impacts and among deterministic strategies, optimising
mean-variance criterion, it is optimal to use a specific convex
programme.
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Price Impact Models and Optimal Execution Stochastic Control approach to Optimal Execution

Stochastic Control approach to Optimal Execution
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Price Impact Models and Optimal Execution Stochastic Control approach to Optimal Execution

Model Setup

• ν = (νt){0≤t≤T} is the trading rate, the speed at which the agent is
liquidating or acquiring shares. It is also the variable the agent
controls in the optimisation problem,

• Qν = (Qν
t ){0≤t≤T} is the agent’s inventory, which is clearly affected

by how fast she trades,

• Sν = (Sνt ){0≤t≤T} is the midprice process, and is also affected in
principle by the speed of her trading (permanent impact)

• Ŝν = (Ŝνt ){0≤t≤T} corresponds to the price process at which the
agent can sell or purchase the asset, i.e. the execution price, by
walking the LOB (temporary impact), and

• X ν = (X ν
t ){0≤t≤T} is the agent’s cash process resulting from the

agent’s execution strategy.
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Price Impact Models and Optimal Execution Stochastic Control approach to Optimal Execution

Model Setup

dQν
t = ±νt dt , Qν

0 = q , (1a)

while the midprice is assumed to satisfy the following SDE,

dSνt = ±g(νt) dt + σ dWt , Sν0 = S , (1b)

where
• W = (Wt){0≤t≤T} is a standard Brownian motion,
• g : R+ → R+ denotes the permanent impact that the agent’s trading

action incurs on the midprice.

The execution price satisfies the SDE

Ŝνt = Sνt ±
(

1
2 ∆ + f (νt)

)
, Ŝν0 = Ŝ , (1c)

where (note the small change of notation from h to f )

• f : R+ → R+ denotes the temporary impact that the agent’s trading
action has on the price they can execute the trade at.
• ∆ ≥ 0 is the bid-ask spread, assumed here to be a constant.
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Price Impact Models and Optimal Execution Stochastic Control approach to Optimal Execution
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Optimal Liquidation with Temporary Impact
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Liquidation

H(t,S , q) = sup
ν∈A

Et,S ,q

[∫ T
t (Su − k νu) νu du

]
,

where Et,S ,q[ · ] denotes expectation conditional on St = S and Qt = q,
and A is the set of admissible strategies. Here dQt = −νtdt.

Assume f (ν) = k ν, and g(ν) = 0, i.e. only temporary price impact
(walking the LOB).

Use the DPP which suggests that H satisfies the DPE (HJB PDE):

∂tH + 1
2σ

2 ∂SSH + sup
ν
{(S − k ν) ν − ν ∂qH} = 0 . (2)

The agent must liquidate all the inventory by time T , hence impose

H(T ,S , q)
t→T−−−→ −∞, for q > 0 , and H(T ,S , 0)

t→T−−−→ 0 .
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Liquidation
The FOC applied to DPE (2):

ν∗ = 1
2k (S − ∂qH) , (3)

which is the optimal trading speed in feedback control form. Now

∂tH + 1
2 σ

2 ∂SSH + 1
4 k (S − ∂qH)2 = 0 (4)

for the value function. Propose ansatz (trial solution)

H(t, q) = q S + h(t, q) , (5)

where h(t, q) is still to be determined, though we know that it must blow
up as t → T .

Thus
∂th + 1

4 k (∂qh)2 = 0 .

Interestingly, the volatility of the asset’s midprice drops out of the problem.
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Again, make ansatz h(t, q) = q2 h2(t) allows us to factor out q and obtain

∂th2 + 1
k h

2
2 = 0 , (6)

which we solve by integrating between t and T to obtain

h2(t) =

(
1

h2(T )
− 1

k
(T − t)

)−1

.

The optimal strategy must ensure that the terminal inventory is zero and
this is equivalent to requiring h2(T )→ −∞ as t → T . In this way the
value function heavily penalises non-zero final inventory. An alternative
way to obtain this condition is to calculate the inventory path along the
optimal strategy and impose that the terminal inventory be zero. To see
this, use the ansatz (5) to reduce (3) to

ν∗t = − 1
k h2(t)Qν∗

t , (7)
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then integrate dQν∗
t = −ν∗t dt over [0, t] to obtain the inventory profile

along the optimal strategy:∫ t

0

dQν∗
s

Qν∗
s

=

∫ t

0

h2(s)

k
ds ⇒ Qν∗

t =
(T − t)− k/h2(T )

T − k/h2(T )
N .

To satisfy the terminal inventory condition Qν∗
T = 0, and also ensure that

the correction h(t, q) is negative, we must have

h2(t)→ −∞ as t → T . (8)

Hence
h2(t) = −k (T − t)−1 ,

so that

Qν∗
t =

T − t

T
N , (9)

and

ν∗t =
N

T
. (10)

The result is TWAP.
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Optimal Acquisition with Temporary Impact

©Jan Ob lój, University of Oxford Market Microstructure & Algo Trading Hilary Term 2022 44 / 165



Price Impact Models and Optimal Execution Stochastic Control approach to Optimal Execution

Acquisition

Objective is to acquire N shares by time T . We let Q0 = 0 and aim to
have QT = N.
Thus, the agent’s expected costs from strategy νt are

E
[ ∫ T

t Ŝt νu du︸ ︷︷ ︸
Terminal Cash

+ (N− Qν
T ) ST︸ ︷︷ ︸

Terminal execution at mid

+α (N− Qν
T )2︸ ︷︷ ︸

Terminal Penalty

]
. (11)

To simplify notation, let Y = (Yt)0≤t≤T denote the shares remaining to
be purchased:

Y ν
t = N− Qν

t , so that dY ν
t = −νt dt ,

and write the value function as

H(t,S , y) = inf
ν∈A

Et,S ,y

[∫ T
t Ŝu νu du + Y ν

T ST + α (Y ν
T )2
]
.
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Applying the DPP, H satisfies the DPE

0 = ∂tH + 1
2σ

2∂SSH + inf
ν
{(S + kν) ν − ν∂yH} , (12)

with H(T ,S , y) = y S + α y2. Optimal speed:

ν∗ = 1
2k (∂yH − S) , (13)

and upon substitution into the DPE above, we obtain

∂tH + 1
2σ

2∂SSH − 1
4 k (∂yH − S)2 = 0 .

Make ansatz

H(t, S , y) = y S + h0(t) + h1(t) y + h2(t) y2 , (14)

where h2(t), h1(t), h0(t) and

h2(T ) = α and h1(T ) = h0(T ) = 0 .
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Moreover, upon substituting the ansatz into the above non-linear PDE we
find that

0 =
{
∂th2 − 1

k h
2
2

}
y2 +

{
∂th1 − 1

2k h2 h1

}
y +

{
∂th0 − 1

4k h
2
1

}
.

• Equation must be valid for each y , so each term in curly braces must
individually vanish.

• Due to h1(T ) = 0, we obtain h1(t) = 0.

• Similarly, since h0(T ) = 0 and h1(t) = 0 we obtain h0(t) = 0.

• Finally, because h2(T ) = α we have

h2(t) =
(

1
k (T − t) + 1

α

)−1
.

Thus, the optimal speed is

ν∗t =
(
(T − t) + k

α

)−1
Y ν∗
t . (15)
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Inventory path
We obtain the optimal inventory path by solving

dY ν∗
t = −

(
(T − t) + k

α

)−1
Y ν∗
t dt

for Y ν∗
t . Recall that Y ν

t = N− Qν
t , so

Qν∗
t =

t

T + k
α

N . (16)

• For any finite α > 0 and finite k > 0,
• it is always optimal to leave some shares to be executed at the terminal

date, and
• the fraction of shares left to execute at the end decreases with the

relative price impact at the terminal date, k/α.

Substitute for Qν∗
t into the expression for ν∗t , so that

ν∗t =
N

T + k
α

. (17)
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Optimal Liquidation with Temporary and
Permanent Price Impact
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Liquidation with Permanent Price Impact

The agent’s performance criterion is

Hν(t, x ,S , q) = Et,x ,S ,q

[
X ν
T︸︷︷︸

Terminal Cash

+Qν
T (SνT − αQν

T )︸ ︷︷ ︸
Terminal Execution

−φ
∫ T
t (Qν

u )2 du︸ ︷︷ ︸
Inventory Penalty

]
(18)

and the value function

H(t, x , S , q) = sup
ν∈A

Hν(t, x ,S , q) .

The DPP implies that the value function should satisfy the HJB equation

0 =
(
∂t + 1

2 σ
2 ∂SS

)
H − φ q2

+ sup
ν
{(ν (S − f (ν)) ∂x − g(ν) ∂S − ν ∂q)H} , (19)

subject to the terminal condition H(T , x ,S , q) = x + S q − α q2.
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Assume that f (ν) = k ν and g(ν) = b ν for constants k ≥ 0 and b ≥ 0
and obtain

ν∗ = 1
2 k

(S ∂x − b ∂S − ∂q)H

∂xH
. (20)

Hence

0 =
(
∂t + 1

2σ
2 ∂SS

)
H − φ q2 + 1

4 k

[(S ∂x − b ∂S − ∂q)H]2

∂xH
.

Make ansatz H(t, x ,S , q) = x + S q + h(t,S , q) with terminal condition
h(T ,S , q) = −α q2. Hence

0 =
(
∂t + 1

2σ
2 ∂SS

)
h − φ q2 + 1

4k [b (q + ∂Sh) + ∂qh]2 .
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Since the above PDE contains no explicit dependence on S and the terminal
condition is independent of S , then ∂Sh(t,S , q) = 0 and

0 = ∂th(t, q)− φ q2 + 1
4k [b q + ∂qh(t, q)]2

.

Use separation of variables h(t, q) = h2(t) q2 where h2(t) to write

0 = ∂th2 − φ+ 1
k

[
h2 + 1

2b
]2
, (21)

subject to h2(T ) = −α. This ODE is of Riccati type and can be integrated
exactly. Let h2(t) = − 1

2b + χ(t), then

∂tχ

kφ− χ2
=

1

k
,

s.t. χ(T ) = 1
2b − α. Next, integrating over [t,T ]

log

√
k φ+ χ(T )√
k φ− χ(T )

− log

√
k φ+ χ(t)√
k φ− χ(t)

= 2γ (T − t) ,

so that

χ(t) =
√
k φ

1 + ζ e2γ (T−t)

1− ζ e2γ(T−t)
, where γ =

√
φ

k
and ζ =

α− 1
2b +

√
k φ

α− 1
2b −

√
k φ

.

(22)
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From (20), the optimal speed to trade at is

ν∗t = −
√
φ

k

1 + ζ e2γ (T−t)

1− ζ e2γ(T−t)
Qν∗

t . (23)

In addition

dQν∗

t =
χ(t)

k
Qν∗

t dt , so that Qν∗

t = N exp

{∫ t

0

χ(s)

k
ds

}
.

To obtain the inventory process∫ t

0

χ(s)

k
ds =

1

k

∫ t

0

√
kφ

1 + ζe2γ(T−s)

1− ζe2γ(T−s)
ds

= log
ζ eγ(T−t) − e−γ(T−t)

ζ eγT − e−γT
,

hence

Qν∗

t =
ζ eγ(T−t) − e−γ(T−t)

ζ eγT − e−γT
N . (24)

The limit in α→ +∞ is independent of b:

Qν∗

t −−−−−→
α→+∞

sinh (γ(T − t))

sinh (γT )
N .

©Jan Ob lój, University of Oxford Market Microstructure & Algo Trading Hilary Term 2022 53 / 165



Price Impact Models and Optimal Execution Stochastic Control approach to Optimal Execution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time

In
v
en
to
ry

 

 

φ = 0
φ = 0.001
φ = 0.01
φ = 0.1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Time

T
ra
d
in
g
S
p
ee
d

 

 

φ = 0
φ = 0.001
φ = 0.01
φ = 0.1

(a) α = 0.01

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time

In
v
en
to
ry

 

 

φ = 0
φ = 0.001
φ = 0.01
φ = 0.1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Time

T
ra
d
in
g
S
p
ee
d

 

 

φ = 0
φ = 0.001
φ = 0.01
φ = 0.1

(b) α = +∞
Figure: Other model parameters are k = 10−3, b = 10−3.

©Jan Ob lój, University of Oxford Market Microstructure & Algo Trading Hilary Term 2022 54 / 165



Limit Order Books and Market Microstructure

Outline

Limit Order Books and Market Microstructure
Quote- vs Order- Driven Markets
The workings of a LOB
Further complexities of LOBs
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Market Microstructure: A Bottom-Up Approach

“Market microstructure is the study of the process and outcomes of
exchanging assets under a specific set of rules. While much of economics
abstracts from the mechanics of trading, microstructure theory focuses on
how specific trading mechanisms affect the price formation process.” – M.
O’Hara (1995)

In contrast to the top-down models where price is specified exogenously,
market microstructure models attempt to explain how price formation
emerges from the actions and interactions of the many different traders in
a market.
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Market Microstructure: A Bottom-Up Approach
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Quote Driven Markets
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Quote Driven Markets

Traditional markets operate thanks to Market Makers.

• Market Makers (Dealers) centralise buy and sell orders providing set
bid and ask quotes

• They are patient: they publicise prices and wait for others to trade
with them

• There are significant barriers to becoming a market maker: hold
stock, have large bankroll, develop infrastructure...

• Market Makers offer a crucial service: provision of liquidity

• They make profit from crossing the bid-ask spread
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Order Driven Markets

Electronic platforms aggregate all (or many) buy and sell orders in a

Limit Order Book (LOB)

Traders

• post limit orders (LO) to sell or buy a given quantity at a given price
 stored in the LOB

• post market orders (MO) to sell or buy a given quantity instantly
 matched against orders in the LOB

• can cancel their outstanding active limit orders
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Order Driven Markets

Euronext

Australian Securities Exchange
Helsinki Stock Exchange

Hong Kong Stock Exchange

Shenzhen Stock Exchange

New York Stock Exchange

Limit order books are used to match buyers and sellers in more than half
of the world’s financial markets

Euronext

Swiss Stock Exchange

Tokyo Stock Exchange

Toronto Stock Exchange

Vancouver Stock Exchange

London Stock Exchange
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LOB vocabulary

• tick size – smallest possible interval between consecutive prices

• minimum order size (lot) – smallest quantity of shares which can be
traded

• Ask Side – all sell orders in the LOB.
Ask Price at – the lowest price among active sell orders.

• Bid Side – all buy orders in the LOB.
Bid Price bt – the highest price among active buy orders.

• Mid Price mt = at+bt
2

Bid–Ask Spread = at − bt
• Depth at a given price level p – the aggregate volume of shares to

trade in orders at price p.
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Price Formation in a Limit Order Book
A Dynamic Example

Bid Side

Ask Side

bid-price

ask-price
Price
(USD)

mid-priceD
ep

th
 a

va
ila

bl
e 

-10

-9

-8

-6

-5

-4

-3

-1

-2

0

-7

7

9

10

3

6

8

4

5

2

1

spread

All LOB graphics from Martin Gould ’15
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LOB – auctions & queues

LOB is composed of two sets of active orders:

• buy orders (quantity < 0)

• sell orders (quantity > 0)

LOBs are often referred to as continuous double-auction mechanisms.

A LOB can also be regarded as a set of queues, each of which contains
active buy or sell orders at a specified price.
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
A Dynamic Example
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Price Formation in a Limit Order Book
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LOB Dynamics Summary

• LOB holds all active buy and sell orders
• Traders may post limit orders in the LOB:

• order to buy/sell a given quantity at given price
• known execution cost
• unknown execution time

• Traders may issue market orders:
• order to buy/sell a given quantity against liquidity in the LOB
• unknown execution cost
• instant execution (if book deep enough)

• Traders may cancel their active limit orders in the LOB

• When current best bid/ask queue depleted by market order or
cancellations, the price moves to the next level of the LOB.
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Limit Order Books and Market Microstructure The workings of a LOB

Price Changes in a LOB

If limit buy/sell order x arrives with price px ≤ bt / px ≥ at then x joins
the LOB.

If limit buy/sell order x arrives with price bt < px < ax then x joins the
LOB and bid/ask changes.

If limit buy/sell order x arrives with price px ≥ at / px ≤ bt then x is a
market order that immediately matches to one, or more if needed, active
sell (respectively, buy) orders upon arrival.
Whenever such a matching occurs, it does so at the price of the active
order, which is not necessarily equal to the price of the incoming order.

An incoming market order x matches to the highest priority active order y
of opposite type, and then the following one ... until x is fulfilled or book
depleted.
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Limit Order Books and Market Microstructure The workings of a LOB

Price Changes in a LOB

Price
(USD)
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Values after arrival (USD)
Arriving order x b(tx) a(tx) m(tx) a(tx)− b(tx)

Initial Values 1.50 1.53 1.515 0.03
($1.48,−3σ, tx) 1.50 1.53 1.515 0.03
($1.51,−3σ, tx) 1.51 1.53 1.52 0.02
($1.55,−5σ, tx) 1.50 1.55 1.525 0.05
($1.47, 4σ, tx) 1.48 1.53 1.505 0.05
($1.50, 4σ, tx) 1.49 1.50 1.495 0.01
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Limit Order Books and Market Microstructure The workings of a LOB

Order Imbalance
Depth (Volume) available at the best bid/ask – and its imbalance – is
often informative

microprice = volume weighted midprice = ρtat + (1− ρt)bt
where ρt is the order imbalance

ρt =
V b
t

V a
t + V b

t

It is a good predictor of trade direction
(ORIT June 21, 2011)

ρ # Buy Orders # Sell Orders

All 756 ( 67% ) 396 ( 33 % )
> 0.5 568 ( 79% ) 155 ( 21% )
> 0.75 320 ( 84% ) 60 ( 16% )
< 0.5 168 ( 43% ) 225 ( 57% )
< 0.25 39 ( 25% ) 116 ( 75%)
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Limit Order Books and Market Microstructure The workings of a LOB

Order Imbalance

A slice of imbalance for MSFT 10:00am to 10:10am on 22 Mar 2011
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Limit Order Books and Market Microstructure The workings of a LOB

The Depth Profile
Most traders assess the state of the LOB via the depth profile

Depth displays stylised facts when measured in ticks from the bid/ask

Mean relative depths profiles for Vivendi, Total, and France Telecom stocks (from

“Statistical Properties of Stock Order Books...”, Bouchaud et al. ’02).
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Limit Order Books and Market Microstructure The workings of a LOB

Relative Price

The distribution of relative prices of incoming orders appears to exhibit
power-law behaviour in all markets studied.

This may be because some traders place limit orders deep into LOBs,
under the optimistic belief that large price swings could occur.
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Limit Order Books and Market Microstructure The workings of a LOB

Relative Price

Figure: CDFs of relative prices of arriving limit orders for 15 stocks on the LSE
(from “The Power of Patience: A Behavioural Regularity in Limit-Order
Placement”, Zovko and Farmer ’02).
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Limit Order Books and Market Microstructure The workings of a LOB

Order Cancellations

Cancellations play a major role in the evolution of the LOB.

Several empirical studies covering a wide range of different markets have
concluded that the vast majority of active orders end in cancellation rather
than matching. This may be between 70% and 80% and possibly up to
99.9% of orders more recently.

This is often attributed to surge of popularity of electronic trading
algorithms, across all markets, which often submit and cancel vast numbers
of limit orders over short periods as part of their trading strategies.
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Limit Order Books and Market Microstructure The workings of a LOB

Order Cancellations

Cancellation rate for NASDAQ Index and Microsoft Stock (from “More Statistical

Properties of Order Books and Price Impact”, Potters and Bouchaud ’03).
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Limit Order Books and Market Microstructure The workings of a LOB

LOBs Impact – pros

The shift from traditional markets to electronic LOB driven markets had
many consequences. Some positive:

• competition leading to lower fees and smaller tick sized

• more information available

• democratised trading process

• choice of patient (limit) or impatient (market) orders available to
everyone

• computerised/algorithmic trading possible
• high frequency trading possible

• HFT ≈ duration of order of seconds, reaction within milliseconds
• accounts for 60− 75% of traded volume

• extra provision of liquidity  market efficiency
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Limit Order Books and Market Microstructure The workings of a LOB

LOBs Impact – cons

And some negative:

• Technological armsrace

• Little human oversight

• Predatory trading

This led to the infamous Flash Crash of May 6, 2010 when Dow Jones IA
(DJIA) dived almost 1000 points (just to recover in minutes). All this
because:

• A mutual fund activated a program to sell 75, 000 E-Mini S&P 500
contracts (≈ 4.1 billion USD) using VWAP algorithm at 9%

• HFT began to quickly buy and resell these contracts to each other
generating more volume: between 2:45:14 and 2:45:27, HFT traded

27, 000 contracts (about 49% of total volume) while buying only 200

contracts net.

• This led the original program to rapidly sell the whole position
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Limit Order Books and Market Microstructure The workings of a LOB

Flash Crash of May 6th, 2010
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Limit Order Books and Market Microstructure The workings of a LOB

Why Model/Study LOBs?

The benefits of having a good model of a LOB include:

• Enhancing the effectiveness of electronic trading algorithms

• Developing optimal execution strategies for traders

• Understanding costs of delayed trading

• Optimising market-making (liquidity providing) algorithms

• Understanding stylised facts about LOBs

• Developing detailed but tractable models of bid-ask spread and
transaction costs

• Providing insight into fundamental economic questions

• Testing theories regarding complex systems as a whole
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Limit Order Books and Market Microstructure The workings of a LOB

(some) LOB studies

• Empirical studies:
Bouchaud et al ’02, Farmer et al. ’04, Hollifield et al. ’04...

• Equilibrium models:
Kyle ’85, Parlour ’98, Foucault et al. ’05, Rosu ’09...

• Reduced form models:
• Stochastic dynamic models (LOB a Markov process in a high-dim state

space):
Smith et al. ’03, Bovier et al. ’06, Bouchaud et al. ’08...

• Queuing theory models:
Cont et al. ’10...
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Limit Order Books and Market Microstructure Further complexities of LOBs

LOBs: Reality is more complex...

Figure 4: Idealized post-fragmentation market microstructure.

Despite these differences, European and US electronic markets have a lot in com-
mon: their microstructures evolved similarly to a state where latency is crucial and
High Frequency Market-Makers (also called High Frequency Traders) became the
main liquidity providers of the market.

Figure 4 gives an idealized view of this fragmented microstructure:

– A specific class of investors: the High Frequency Traders (HFT) are an es-
sential part of the market; by investing more than other market participants
in technology, thus reducing their latency to markets, they have succeeded
in:

⇤ implementing market-making-like behaviors at high frequency;
⇤ providing liquidity at the bid and ask prices when the market has low

probability of moving (thanks to statistical models);
⇤ being able to cancel very quickly resting orders in order to minimize the

market risk exposure of their inventory;

they are said to be feature in 70% of the transactions in US Equity markets,

8

Source: Lehalle ’13

MTF=Multilateral Trading Facility; ECN = Electronic Communications Network;

SOR = Smart Order Routing; OTC = Over The Counter
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Limit Order Books and Market Microstructure Further complexities of LOBs

LOBs: Reality is more complex...

• the same shares traded on many venues – smart routing necessary

• consolidated LOB for all venues may (US) or may not (EU) be readily
available

• various execution order conventions: price-time priority (FIFO),
price-size priority, pro-rata priority  strategic order posting

• hidden (iceberg orders) or invisible (dark pool) liquidity  fishing,
price manipulation, predatory trading
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Limit Order Books and Market Microstructure Further complexities of LOBs

Priority

Price-time priority

• For active buy orders, priority is given to the active orders with the
highest price.

• For active sell orders, priority is given to the active orders with the
lowest price.

• Ties are broken by selecting the active order with the earliest
submission time.

Price-time priority is an effective way to encourage traders to place limit
orders. Without a priority mechanism based on time, there is no incentive
for traders to show their hand by submitting limit orders earlier than is
absolutely necessary.
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Limit Order Books and Market Microstructure Further complexities of LOBs

Priority

Price-size priority

• For active buy orders, priority is given to the active orders with the
highest price.

• For active sell orders, priority is given to the active orders with the
lowest price.

• Ties are broken by selecting the active order with the largest size.

Price-time priority is an effective way to encourage traders to place large
limit orders, thereby providing liquidity to the market.
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Limit Order Books and Market Microstructure Further complexities of LOBs

Priority

Pro-rata priority

• For active buy orders, priority is given to the active orders with the
highest price.

• For active sell orders, priority is given to the active orders with the
lowest price.

• When a tie occurs at a given price, each relevant active order receives
a share of the matching proportional to the fraction of the depth
available that it represents at that price.

• Traders in pro-rata priority LOBs are faced with the substantial
difficulty of optimally selecting limit order sizes, because posting limit
orders with larger sizes than the quantity that is really desired for
trade becomes a viable strategy to gain priority.
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Limit Order Books and Market Microstructure Further complexities of LOBs

Priority

Pro-rata priority
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Figure: An LOB with pro-rata priority.

If a buy market order of size −3 lots arrived, then −1 lot would match to
active order x1 and −2 lots would match to active order x2, because they
correspond, respectively, to 1/3 and 2/3 of the depth available at at .
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Limit Order Books and Market Microstructure Further complexities of LOBs

Priority–triggered behaviour

Different priority mechanisms encourage traders to behave in different
ways:

• Price-time priority encourages traders to submit limit orders early

• Price-size and pro-rata priority reward traders for placing large limit
orders and thus for providing greater liquidity to the market

Traders’ behaviour is closely related to the priority mechanism used, so
LOB models need to take priority mechanisms into account when
considering order flow. Furthermore, priority plays a pivotal role in models
that attempt to track specific orders.
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Limit Order Books and Market Microstructure Further complexities of LOBs

Hidden Liquidity
An iceberg order is a type of limit order that specifies not only a total size
and price but also a visible size. Other market participants only see the
visible size.

Rules regarding the treatment of the hidden quantity vary greatly from one
exchange to another:

• In some cases, once a quantity of at least the visible size matches to
an incoming market order, another quantity equal to the visible size
becomes visible, with time priority equal to that of a standard limit
order placed at this time.

• Some other trading platforms, such as Currenex and Hotspot FX,
allow entirely hidden limit orders. These orders are given priority
behind both entirely visible active orders at their price and the visible
portion of iceberg orders at their price, but they give market
participants the ability to submit limit orders without revealing any
information whatsoever to the market.
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Limit Order Books and Market Microstructure Further complexities of LOBs

Dark Pools

Recently, there has also been an increase in the popularity of so-called
dark pools, particularly in equities trading.

• electronic engine matching buy and sell order without routing to lit
exchanges

• no information about market participants’ trading intentions is
available to other market participants

• some dark pools are essentially LOBs in which all limit orders are
entirely hidden

• other dark pools are time-priority queues of buy/sell orders (no prices
specified), trading at mid-point of a reference (lit) exchange

• allow to trade large amounts without impacting the price – over 30%
of all trades!
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Limit Order Books and Market Microstructure Further complexities of LOBs

LOBs Summary
• Electronic markets operate without designated market maker.

• Instead, the Limit Order Book (LOB) holds all active buy and sell
orders

• Traders may post orders in the LOB: limit or market, as well as cancel
active limit orders.
When current best bid/ask queue depleted by market order or
cancellations, the price moves to the next level of the LOB.

• LOBs democratised trading, made High Frequency Trading (HFT)
possible and increased provision of liquidity

• but also led to technological armsrace, predatory trading,
algorithm-triggered crashes

• In reality large part of liquidity hidden in iceberg orders and/or dark
pools

• Practice is more complex with many layers and implementation
challenges
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Market Making

Outline

Market Making
Market Maker’s Control Problem
Optimal Postings
Market Making at-the-touch
Market Making with No Terminal Penalty
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Market Making

Market Making
• St = S0 + σWt , σ > 0 and W = (Wt)0≤t≤T is a standard Brownian

motion,
• δ± depth at which the agent posts LOs. Sell LOs are posted at a

price of St + δ+
t and buy LOs at St − δ−t .

• M± counting processes corresponding to the arrival of other
participants’ buy (+) and sell (−) market orders (MOs) which arrive
at Poisson times with intensities λ±.
• Nδ,± denote the counting processes for the agent’s filled sell (+) and

buy (−) LOs.
• Conditional on an MO arrival, the LO is filled with probability
e−κ

± δ±t with κ± ≥ 0.
• X δ denotes the MM’s cash process

dX δ
t = (St− + δ+

t ) dNδ,+
t − (St− − δ−t ) dNδ,−

t . (25)

• Qδ denotes the agent’s inventory process and satisfies the SDE

Qδ
t = N

δ,−
t − N

δ,+
t . (26)
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Market Making Market Maker’s Control Problem

Market Maker’s Control Problem

The MM’s performance criterion is

Hδ(t, x , S , q) = Et,x ,q,S

[
XT + QT (ST − αQT )− φ

∫ T

t
(Qu)2 du

]
,

where α ≥ 0 represents the fees for taking liquidity (i.e. using an MO) as
well as the impact of the MO walking the LOB, and φ ≥ 0 is the running
inventory penalty parameter. The MM’s value function is

H(t, x ,S , q) = sup
δ±∈A

Hδ(t, x , S , q) , (27)

and the MM caps her inventory so that it is bounded above by q > 0 and
below by q < 0.
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Market Making Market Maker’s Control Problem

DPE
A DPP holds and the value function satisfies the DPE

0 = ∂tH + 1
2σ

2∂SSH − φq2

+ λ+ sup
δ+

{
e−κ

+δ+ (
H(t, x + (S + δ+), q − 1, S)− H

)}
1q>q

+ λ− sup
δ−

{
e−κ

−δ−
(
H
(
t, x − (S − δ−), q + 1, S

)
− H

)}
1q<q ,

(28)

where 1 is the indicator function, with terminal condition

H(T , x , S , q) = x + q(S − αq) . (29)

Recall that inventory is bounded, thus when qt = q (q) the optimal
strategy is to post one-sided LOs which are obtained by solving (28) with
the term proportional to λ− (λ+) absent as stated by the indicator
function 1 in the DPE. Alternatively, one can view these boundary cases
as imposing δ− = +∞ and δ+ = +∞ when q = q and q respectively.
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Market Making Market Maker’s Control Problem

Solving HJB

Make an ansatz for H. In particular, write

H(t, x , q, S) = x + q S + h(t, q) . (30)

The first term is the accumulated cash, the second term is the book value
of the inventory marked-to-market, and the last term is the added value
from following an optimal market making strategy up to the terminal date.
Thus,

φ q2 = ∂th(t, q)+λ+sup
δ+

{
e−κ

+δ+ (
δ++ h(t, q − 1)− h(t, q)

)}
1q>q

+λ−sup
δ−

{
e−κ

−δ−
(
δ−+ h(t, q + 1)− h(t, q)

)}
1q<q ,

(31)
with terminal condition h(T , q) = −αq2.
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Market Making Market Maker’s Control Problem

Optimal Controls

Then the optimal depths in feedback form are given by

δ+,∗(t, q) =
1

κ+
− h(t, q − 1) + h(t, q) , q 6= q , (32a)

δ−,∗(t, q) =
1

κ−
− h(t, q + 1) + h(t, q) , q 6= q , (32b)

and the boundary cases are δ+,∗(t, q) = +∞ and δ−,∗(t, q) = +∞ when
q = q and q respectively.

Substituting the optimal controls into the DPE we obtain

φ q2 = ∂th(t, q)+λ+

κ+ e−1e−κ
+(−h(t,q−1)+h(t,q) 1q>q

+λ−

κ− e
−1e−κ

−(−h(t,q+1)+h(t,q)) 1q<q .
(33)
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Market Making Market Maker’s Control Problem

Symmetric fill probability
It is possible to find an analytical solution to the DPE if the fill
probabilities of LOs is the same on both sides of the LOB. In this case if
κ = κ+ = κ− then write

h(t, q) =
1

κ
logω(t, q) ,

and stack ω(t, q) into a vector

ω(t, q) =
[
ω(t, q), ω(t, q − 1), . . . , ω(t, q)

]′
.

Now, let A denote the (q − q + 1)-square matrix whose rows are labeled
from q to q and whose entries are given by

Ai ,q =


−φκ q2 , i = q ,
λ+ e−1 , i = q − 1 ,
λ− e−1 , i = q + 1 ,

0 , otherwise.

(34)
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Market Making Market Maker’s Control Problem

(33) can now be rewritten as the coupled system of equations

∂tω(t) + Aω(t) = 0. (35)

with terminal and boundary conditions ω(T , q) = e−ακq
2
.

This is solved giving

ω(t) = eA(T−t)z , (36)

where z is a (q − q + 1)-dim vector where each component is zj = e−ακ j
2
,

j = q, . . . , q.

©Jan Ob lój, University of Oxford Market Microstructure & Algo Trading Hilary Term 2022 110 / 165



Market Making Optimal Postings

Optimal Postings
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Market Making Optimal Postings

Optimal postings φ = 0.001
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Figure: The optimal depths as a function of time for various inventory levels and
T = 30. The remaining model parameters are: λ± = 1, κ± = 100, q = −q = 3,
φ = 0.001 and φ = 0.02, α = 0.0001, σ = 0.01, S0 = 100.
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Market Making Optimal Postings

Optimal postings φ = 0.02
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Figure: The optimal depths as a function of time for various inventory levels and
T = 30. The remaining model parameters are: λ± = 1, κ± = 100, q = −q = 3,
φ = 0.001 and φ = 0.02, α = 0.0001, σ = 0.01, S0 = 100.
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Market Making Optimal Postings

Mean reversion in inventory

Given the pair of optimal strategies δ+(t, q), δ−(t, q), the expected drift in
inventories qt is given by

µ(t, q) , lim
s↓t

1

s − t
E [Qs − Qt |Qt− = q]

=λ−e−κ
−δ−,∗(t,q) − λ+e−κ

+δ+,∗(t,q) .

(37)

Note that the drift µ(t, q) depends on time. For instance it is clear that
for the same level of inventory the speed will be different depending on
how near of far is the strategy from the terminal date because at time T
the strategy tries to unwind all outstanding inventory.
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Market Making Optimal Postings

Inventory
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Market Making Optimal Postings
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Figure: Inventory and midprice path. Model parameters are: λ± = 1, κ± = 100,
q = −q = 10, φ = 0.02, α = 0.0001, σ = 0.01, S0 = 100.
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Market Making Optimal Postings

Profit and Loss
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Figure: P&L and Life Inventory of the optimal strategy for 10,000 simulations.
The remaining model parameters are: λ± = 1, κ± = 100, q = −q = 10,
α = 0.0001, σ = 0.01, and S0 = 100.
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Market Making Optimal Postings

Market Making at-the-touch
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Market Making Market Making at-the-touch

Market Making at-the-touch
Throughout we assume that the spread is constant and equal to ∆. Next, let
`±t ∈ {0, 1} denote whether the agent is posted on the sell side (+) or buy side
(−) of the LOB. In this way, the agent may be posted on both sides of the book,
only the sell side, only the buy side, or not posted at all. Her performance criteria
is

H`(t, x ,S , q) = Et,x,S,q

[
X `
T + Q`

T

(
ST −

(
∆
2 + ϕQ`

T

))
− φ

∫ T

t

(
Q`

u

)2
du

]
,

where her cash process X `
t now satisfies the SDE

dX `
t =

(
St + ∆

2

)
dN+,`

t −
(
St − ∆

2

)
dN−,`t ,

where N±,`t denote the counting process for filled LOs. We also further assume
that, if she is posted in the LOB, when a matching MO arrives her LO is filled
with probability one. In this case, N±,`t are controlled doubly stochastic Poisson
processes with intensity `±t λ

±.
The agent is not posted on the buy (sell) side if her inventory is equal to the
upper (lower) inventory constraints q (q) and her value function is denoted by

H(t, x ,S , q) = sup
`∈A

H`(t, x ,S , q) .
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Market Making Market Making at-the-touch

The Resulting DPE

Applying the DPP, we find the agent’s value function H should satisfy the
DPE

0 =
(
∂t + 1

2σ
2∂SS

)
H − φ q2

+ λ+ max
`+∈{0,1}

{(
H
(
t, x +

(
S + ∆

2

)
`+,S , q − `+

)
− H

)}
1q>q

+ λ− max
`−∈{0,1}

{(
H
(
t, x −

(
S − ∆

2

)
`−, S , q + `−

)
− H

)}
1q<q ,

subject to the terminal condition

H(T , x ,S , q) = x + q
(
S −

(
∆
2 + ϕ q

))
.
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Market Making Market Making at-the-touch

Ansatz:
H(t, x ,S , q) = x + q S + h(t, q) ,

and on substituting this ansatz into the above DPE we find that h satisfies

0 = ∂th − φ q2

+ λ+ max
`+∈{0,1}

{(
`+ ∆

2 +
[
h(t, q − `+)− h(t, q)

])}
1q>q

+ λ− max
`−∈{0,1}

{(
`− ∆

2 +
[
h(t, q + `−)− h(t, q)

])}
1q<q ,

subject to the terminal condition

h(T , q) = −q
(

∆
2 + ϕ q

)
.

When ` = 0 both terms that are being maximised are zero, hence,

`+,∗(t, q) = 1{
∆
2 +[h(t,q−1)−h(t,q)]>0

}
∩{q>q}

,

`−,∗(t, q) = 1{
∆
2 +[h(t,q+1)−h(t,q)]>0

}
∩{q<q}

.
(38)

The agent posts an LO on the appropriate side of the LOB by ensuring that she

only posts if the arrival of an MO, which hit/lifts her LO, produces a change in

her value function larger than −∆
2 .
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Market Making Market Making with No Terminal Penalty

Market Making with No Terminal Penalty
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Market Making Market Making with No Terminal Penalty

Solving HJB with α = φ = 0
Assume no penalties for liquidating inventories at time T . Thus the ansatz
is

H(t, x , q,S) = x + q S + g(t) . (39)

Note that the function g(t) does not depend on q. In the problem above
the Ansatz contained h(t, q) because the optimal strategy had to manage
inventory risk which is something that is not a problem when α = 0 here.
Thus,

0 = gt(t) + λ+ sup
δ+

{
e−κ

+δ+
δ+
}

+ λ− sup
δ−

{
e−κ

−δ− δ−
}
, (40)

and the optimal postings are:

δ∗,+ =
1

κ+
(41)

and

δ∗,− =
1

κ−
. (42)
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Market Making Market Making with No Terminal Penalty

Solving HJB with α = φ = 0

Alternatively note that

• For a risk-neutral MM, who does not penalise inventories, seeks to
maximise the probability of being filled at every instant in time.

• The MM chooses δ± to maximise the expected depth conditional on
a market order hitting or lifting the appropriate side of the book:
maximises δ±e−κ

±δ± . The FOC

e−κ
±δ± − κ±δ±e−κ±δ± = 0 . (43)

Thus, we see that the optimal half spreads are as in (41) and (42).
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Transient Price Impact Models

Outline

Transient Price Impact Models
Obizhaeva–Wang type models
Non-robustness w.r.t. decay kernel
Regularity of market models
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Transient Price Impact Models Obizhaeva–Wang type models

Types of price impact

We have previously considered A-Ch setting with:

• permanent price impact and

• temporary price impact.

In reality, transactions interact with the LOB. Market orders will eat into
the book but new liquidity will then come as markets are resilient.

We now consider optimal execution in a model with

• transient price impact.
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Transient Price Impact Models Obizhaeva–Wang type models

Modelling transient price impact

Idea: model transient price impact by:

• stochastic dynamics of LOB
 e.g. constant depth λ, model only bid Bt & ask At

• a buy (market) order eats into the ask side of the book
 a buy order of ∆Qt > 0 moves ask At+ = At + ∆Qt/λ

• book then reverts back at some speed
 according to a decay kernel G (delay), e.g. e−ρt , (1 + t)−α

Obizhaeva & Wang ’13, Alfonsi et al. ’08, Gatheral ’10, Gatheral et al. ’12...
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Transient Price Impact Models Obizhaeva–Wang type models

Simple transient price impact (Obizhaeva & Wang ’13)

• Assume no bid-ask spread, S0
t = Bt = At is a martingale

• Constant book depth of λ = 1/G (0)

• A discrete order Qt+ − Qt =: ∆Qt moves price

SQ
t+ = SQ

t + ∆QtG (0)

and is executed at cost of (= - expected revenue of)

1

G (0)

∫ SQ
t+

SQ
t

vdv =
1

2G (0)

(
(SQ

t+)2 − (SQ
t )2

)
=

G (0)

2
(∆Qt)

2+∆QtS
Q
t .

• The market is resilient and trade impact wanes away. So that

SQ
t = S0

t +
∑

s<t:|∆Qs |>0

G (t − s)∆Qs
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Transient Price Impact Models Obizhaeva–Wang type models

Simple transient price impact – cont.
• Assume now trading is only possible at some given time points:

0 = t0 < t1 < . . . < tn = T , Q0 given, QT = 0 and

Qt = Q0 +
∑
i :ti<t

∆i , where ∆i := Qti+ − Qti

• The mid-price resulting from strategy Q is

SQ
t = S0

t +
∑
i :ti<t

G (t − ti )∆i

• The total cost of executing Q is

C(Q) = S0
0Q0 −R(Q) = S0

0Q0 +
n∑

i=0

(
G (0)

2
∆2

i + ∆iS
Q
t

)

= S0
0Q0 +

n∑
i=0

S0
ti

∆i +
n∑

i=0

G (0)

2
∆2

i + ∆i

∑
j<i

G (ti − tj)∆j


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Transient Price Impact Models Obizhaeva–Wang type models

Simple transient price impact – cont.

S0
0Q0 +

n∑
i=0

S0
ti

∆i = S0
0Q0 +

∫ T

0
S0
t dQt = −

∫ T

0
Qt−dS

0
t

which has zero expectation (assuming ∆i bounded). Further,

n∑
i=0

G (0)

2
∆2

i + ∆i

∑
j<i

G (ti − tj)∆j


=
∑
i

G (0)

2
∆2

i +
∑
i

∑
j<i

G (ti − tj)∆i∆j

=
1

2

∑
i

∑
j

G (|ti − tj |)∆i∆j

In consequence, the total expected cost of liquidation following Q is

E[C(Q)] =
1

2

∑
i

∑
j

G (|ti − tj |)E [∆i∆j ]
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Transient Price Impact Models Obizhaeva–Wang type models

Simple transient price impact – solution

It is then enough to look for Q among deterministic strategies:

minimise
∑
i

∑
j

G (|ti − tj |)∆i∆j over ∆ ∈ Rn+1 : ∆T1 = −Q0

Rk: value invariant under ∆→ −∆ =⇒ Optimal Buy = - Optimal Sell.

If G is strictly positive definite then the optimal solution ∆∗ is

∆∗ = const · Γ−11, where Γij = G (|ti − tj |).

Let us take equidistant steps: ti+1 − ti = T
N and look at different

examples of G .
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Transient Price Impact Models Obizhaeva–Wang type models

Optimal strategy – examples
Optimal ∆∗i for t ∈ [0, 1], N = 20, Q0 = −100 and four decay kernels:

G1(t) = e−5t , G2(t) = (0.5− 2.7t)+, G3(t) =
1

(1 + 10t)2
, G4(t) =

1

1 + (10t)2
.

Which one is which?

A =

∣∣∣∣ 1 2

3 4

∣∣∣∣
B =

∣∣∣∣ 2 1

4 3

∣∣∣∣
C =

∣∣∣∣ 2 3

4 1

∣∣∣∣
−5 0 5 10 15 20 25
0

2

4

6

8

10

12

14
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0
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Transient Price Impact Models Obizhaeva–Wang type models

Optimal strategy – examples
Optimal ∆∗i for t ∈ [0, 1], N = 100, Q0 = −100 and four decay kernels:

G1(t) = (0.5−2.7t)+, G2(t) =
1

(1 + 5t)2
, G3(t) =

1

1 + (10t)2
G4(t) =

1

1 + (7t)2
.

Which one is which?

A =

∣∣∣∣ 1 3

4 2

∣∣∣∣
B =

∣∣∣∣ 1 4

3 2

∣∣∣∣
C =

∣∣∣∣ 2 3

4 1

∣∣∣∣
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Non-robustness w.r.t. decay kernel
The optimal ∆∗i for t ∈ [0, 1], N = 100, Q0 = −100 and three decay kernels:

G2(t) =
1

(1 + 5t)2
, G3(t) =

1

1 + (10t)2
G4(t) =

1

1 + (7t)2
.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

differ dramatically...
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Notion of “price manipulation strategy”

We saw that very similar decay functions may lead to drastically different
optimal portfolios, including round-trip-taking trading. Clearly requires
further studies.

Definition
A round trip strategy Q, Q0 = QT = 0 with strictly negative expected cost
E[C(Q)] < 0 is called a price manipulation strategy.

Note that this is not the usual arbitrage since profit is not a.s. but in
expectation. However in some models rescaling and repeating price
manipulation leads to (weak) arbitrage.

We first extend our previous analysis to arbitrary strategies Q.
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Transient price impact with arbitrary strategies
With discrete Q, the impacted price process was

SQ
t = S0

t +
∑
i :ti<t

G (t − ti )∆i = S0
t +

∫
s<t

G (t − s)dQs

and the last term extends to arbitrary Q (predictable, left-continuous, of
bounded variation). The revenues of a continuous strategy are given as
previously

−
∫ T

0
SQ
t dQt = −

∫ T

0
S0
t dQt −

∫ T

0

∫
s<t

G (t − s)dQsdQt .

In the case of discrete Q we had

−
n∑

i=0

S0
ti

∆i −
1

2

∑
i

∑
j

G (|ti − tj |)∆i∆j

= −
∫ T

0
S0
t dQt −

1

2

∫ ∫
G (|t − s|)dQsdQt
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Transient price impact with arbitrary strategies

Combining, the execution cost of Q are

C(Q) = S0
0Q0 −R(Q) =

∫ T

0
Qt−dS

0
t +

1

2

∫ T

0

∫ T

0
G (|t − s|)dQsdQt .

composed of volatility risk and price impact cost

Cexec(Q) =
1

2

∫ T

0

∫ T

0
G (|t − s|)dQsdQt .

Price manipulation ⇐⇒ E[Cexec(Q)] < 0.

Let’s start with understanding when Cexec(Q) ≥ 0 a.s.
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Bochner’s theorem and positive costs

Proposition

We have Cexec(Q) ≥ 0 for all strategies Q iff G is positive definite, i.e. can be

represented as the Fourier transform of a positive finite Borel measure µ on R.

Further, if G is strictly positive definite (µ is not discrete) then Cexec(Q) > 0 for

all nonzero Q.

We may also formalise the case of deterministic discrete strategies.

Proposition (Gatheral, Schied and Slynko ’12)
Suppose G is positive definite. Then among deterministic strategies trading at
given times (ti ), an optimal one Q∗ satisfies a generalised Freedholm integral
equation ∫

G (|ti − s|)dQ∗s = λ, i = 0, 1, . . . ,N

for some constant λ.

Rk.: We wrote this equation as Γ∆ = const · 1 before.
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Is absence of price manipulation enough?

We have

positive definite G =⇒ no price manipulation strategy.

Is this enough? Take
G (t) = e−t

2

which, up to scaling, is its own Fourier transform and hence positive
definite.

Let’s look at the optimal strategy for T = 10, Q0 = −100 and vary N.
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, Q0 = −100, N = 10
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, Q0 = −100, N = 15
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©Jan Ob lój, University of Oxford Market Microstructure & Algo Trading Hilary Term 2022 141 / 165



Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, Q0 = −100, N = 20
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, Q0 = −100, N = 25

−5 0 5 10 15 20 25 30
−200

−150

−100

−50

0

50

100

150

200
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, Q0 = −100, N = 37
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, Q0 = −100, N = 38

−5 0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 x 106
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, Q0 = −100, N = 100
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Clearly excluding price manipulation strategies is not enough...
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Transient Price Impact Models Regularity of market models

Price manipulation strategies

Definition
A market model admits price manipulation if there exists a round trip
strategy Q, Q0 = QT = 0 with strictly positive expected revenues
E[R(Q)] > 0.

Definition
We say that a market impact model admits transaction–triggered price
manipulation if the expected revenues of a sell (resp. buy) program can be
increased by intermediate buy (resp. sell) orders.

Remark: in a sensible model (i.e. if buying increases prices and selling
decreases prices) absence of transaction–triggered price manipulation
implies absence of the usual price manipulation.
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Transient Price Impact Models Regularity of market models

Regularity of Almgren–Chriss type models

Recall that in A-CH framework, the impacted price is

SQ
t = S0

t +

∫ t

0
g(Q̇s)ds + h(Q̇t).

Proposition (Huberman & Stanzl ’04, Gatheral ’10)

If the model above does NOT admit price manipulation for all T > 0 then
g(x) = γx for some γ ≥ 0.
Further, if g is linear and x → xh(x) is convex than the model does NOT
admit transaction–triggered price manipulation.

Rk: the second part is clear since in this setting the optimal Q∗ is linear.
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Transient Price Impact Models Regularity of market models

Regularity of Obizhaeva–Wang type models

Proposition (Alfonsi, Schied & Slynko ’12)

A transient price impact model with decay kernel G s.t.

G (0)− G (s) < G (t)− G (t + s), for some s 6= t,

admits transaction-triggered price manipulation trading at {0, s, t + s}.
In particular, it is enough that G is NOT convex for small t.

Proposition (Alfonsi et al. ’12, Gatheral et al. ’12)

A transient price impact model with convex, decreasing, non-negative
decay kernel G admits a unique optimal Q∗ which is monotone in time. In
particular the setup does NOT admit transaction-triggered price
manipulation.
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Transient Price Impact Models Regularity of market models

Other developments

• Non-linear transient price impact models: the book has varying depth
according to a given shape f , see Alfonsi & Schied ’10

• A combination of impacts, e.g. Gatheral ’10

SQ
t = S0

t +

∫ t

0
h(−Q̇t)G (t − s)ds

• Stochastic models of LOB where the shape f is a stochastic process
in space of curves and/or stochastic resilience, see Alfonsi & Infante
Acevedo ’12, Klöck ’12, Fruth, Schöneborn & Urusov ’11, Müller &
Keller-Ressel ’15.

• ...
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Transient Price Impact Models Regularity of market models

Summary of transient market impact models

• Transient price impact models take into account the interaction of
orders with the LOB and market resilience

• Under constant LOB depth, discrete trading at (ti ) and maximising
expected revenues the optimal strategy explicit for many impact
decay kernels G

• More generally the problem quickly becomes very hard...

• Even in simple setting, the optimal strategies may often involve round
trips. Solution is non-robust with respect to G .

• Possible to study, and provide sufficient conditions for, the absence of
price-triggered manipulation strategies.
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Predatory trading and HF hot-potatos

Outline

Predatory trading and HF hot-potatos
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Predatory trading and HF hot-potatos

Multi-agent frameworks

• In reality many agents interact in a market.

• Mathematically best modelled as game. When number of players
n→∞, sometimes possible to analyse as a mean field game.
• Interesting as it allows to study

• Interaction of one large player with n small players (e.g. predatory
trading)

• Global market implications of interactions between small players
• Properties of markets which facilitate different phenomena
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Predatory trading and HF hot-potatos

Predatory Trading

Large Trader facing a forced liquidation
+

other (HF) traders aware of this fact
⇓

Predatory Trading

Examples of “targets”:

• Index-replicating funds at rebalancing dates

• Institutional investors subject to regulatory constraints (e.g. when an
instrument is downgraded)

• Traders using portfolio insurance or stop-loss strategies

• Hedge funds close to a margin call

• Recalled short-seller
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Predatory trading and HF hot-potatos

Predatory Trading

“... if lenders know that a hedge fund needs to sell something quickly, they
will sell the same asset – driving the price down even faster. Goldman,
Sachs & Co. and other counterparties to LTCM did exactly that in 1998.”

Business Week, 26 Feb 2001

“When you smell blood in the water, you become a shark ... when you
know that one of your number is in trouble ... you try to figure out what
he owns and you start shorting those stocks ... ”

Cramer, 2002
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Predatory trading and HF hot-potatos

Predatory Trading – mechanisms
When a need of a large trader (prey) to liquidate is recognised, the
strategic traders (predators) might
• first trader in the same direction

• withdraw liquidity instead of providing it
• market impact is greater leading to price overshooting
• may further enforce distressed trader’s need to liquidate

• then reverse direction to profit from the overshoot

• closing the roundtrip at a profit.

However when strategic traders have a longer horizon than the liquidation,
their behaviour may depend on market characteristics:

• could act as predators as above  large trader tries to keep
intentions hidden (stealth trading)

• could act as liquidity providers  large trader announces intentions
(sunshine trading)

see Brunnermeier & Pedersen ’05, Carlin, Lobo & Viswanathan ’05, Schied &

Schöneborn ’08.
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Predatory trading and HF hot-potatos

One-period game model with A–Ch price impact
• n + 1 players with portfolios Q0(t), . . . ,Qn(t), t ∈ [0,T ], assumed

cont. diff. in time
• one prey (seller): Q0(0) = q0 > 0, Q0(T ) = 0
• n predators: Qi (0) = Qi (T ) = 0, i = 1, . . . , n

• and the above is common knowledge

• players are risk-neutral and maximise their expected profit

Ri (Q) = −E
[∫ T

0
StdQi (t)

]
• one risk-free and one risky asset, continuous trading, Almgren–Chriss

linear price impact model

S(t) = S(0) + σWt + γ

n∑
i=1

(Qi (t)− Qi (0)) + η

n∑
i=1

Q̇i (t)

• Solved by searching for Nash equilibrium.
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Predatory trading and HF hot-potatos

One-period game model with A–Ch price impact

Assuming all Qi are deterministic this can be solved explicitly giving

Q̇∗i (t) = αe
− n

n+2
γ
η
t + βie

γ
η
t
,

where

α =
−n
n + 2

γ

η

(
1− e

− n
n+2

γ
η
T
)−1 x0

n + 1
,

βi =
γ

η

(
e
γ
η
T − 1

)−1
(
Qi (T )− Qi (0) +

x0

n + 1

)
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Predatory trading and HF hot-potatos

Optimal strategies with n = 1, T = 1, γ
η = 0.3

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

Distressed trader (blue) and one predator in a elastic market
(i.e. temporary impact > permanent impact)
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Predatory trading and HF hot-potatos

Optimal strategies with n = 1, T = 1, γ
η = 20

0.2 0.4 0.6 0.8 1.0

!50

50

100

Distressed trader (blue) and one predator in an plastic market
(i.e. permanent impact > temporary impact)
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Predatory trading and HF hot-potatos

Optimal strategies with n = 1, T = 1, γ
η = 100

0.2 0.4 0.6 0.8 1.0

!50

50

100

Distressed trader (blue) and one predator in a highly plastic market.

©Jan Ob lój, University of Oxford Market Microstructure & Algo Trading Hilary Term 2022 161 / 165



Predatory trading and HF hot-potatos

Effect of predators, T = 1, x0 = 100, S0 = 100,
γ = η = 2%

Comparison of n = 1 and n = 40 predators. Aggregated Holdings:

0.2 0.4 0.6 0.8 1.0
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100

0.2 0.4 0.6 0.8 1.0

!20

20

40

60

80

100

Expected market price:

0.2 0.4 0.6 0.8 1.0

96.4

96.6

96.8

97.0

97.2

97.4

97.6

0.2 0.4 0.6 0.8 1.0

96.82

96.84

96.86

96.88

96.90

Expected execution cost E[C(Q)]: 3.1% and 3.2% (compare with 3% when n = 0)

Expected revenue per predator: 7.27 and 0.4.
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Predatory trading and HF hot-potatos

Effect of predators, T = 1, x0 = 100, S0 = 100,
γ = 20 ∗ η = 2%

Comparison of n = 1 and n = 40 predators. Aggregated Holdings:

0.2 0.4 0.6 0.8 1.0

!50

50

100

0.2 0.4 0.6 0.8 1.0

!100

!50

50

100

Expected market price:

0.2 0.4 0.6 0.8 1.0

65

70

75

0.2 0.4 0.6 0.8 1.0

60.05

60.10

60.15

Expected execution cost E[C(Q)]: 33.3% and 40% (was 22% when n = 0)
Expected revenue per predator: 665 and 2.3.

Price and execution costs scale linearly with costs when keeping γ
η fixed.
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Predatory trading and HF hot-potatos

HF hot-potato game

Schied & Zhang ’13 considered the following setup:

• two HF players Q and Y trading in an Obizhaeva & Wang market
with G (t) = e−ρt

• trading at an equidistant discrete time grid

• with opposite initial positions Q0 = −Y0.

Using a Nash equilibrium analysis, they show that

• the optimal behaviour, if trading is frequent enough, involves a highly
oscillatory trading

• hot-potato effect with volume passed between traders

• the effect can be eliminated if transaction costs present and high
enough compared to LOB depth
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Predatory trading and HF hot-potatos

Multi-agent setup summary
• Detailed analysis of market behaviour may require models with

interacting agents

• Mathematically, often done using game theory and searching for Nash
equilibria

• Predatory trading can be described as a game between one large seller
(prey) and n strategic traders (predators)

• Both from the theory and practice, we see that predators often first
trade in the same direction as the large trader leading to price
overshoot of which they then take advantage.

• The optimal behaviour highly dependent on the market characteristic
(e.g. which type of price impact dominates)

• More involved situations (e.g. strategic traders having longer trading
horizon) may lead to qualitatively different solutions

• Many other situations in which game analysis is interesting, e.g. high
trade volume (hot-potato) effect of trading between two agents.
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